Translate this page in your language


Thursday, December 8, 2011

Joint Photographic Expert Groups(JPEG)

In computing, JPEG is a commonly used method of lossy compression for digital photography (image). The degree of compression can be adjusted, allowing a selectable tradeoff between storage size and image quality. JPEG typically achieves 10:1 compression with little perceptible loss in image quality.

JPEG compression is used in a number of image file formats. JPEG/Exif is the most common image format used by digital cameras and other photographic image capture devices; along with JPEG/JFIF, it is the most common format for storing and transmitting photographic images on the World Wide Web.[citation needed] These format variations are often not distinguished, and are simply called JPEG.

The term "JPEG" is an acronym for the Joint Photographic Experts Group which created the standard. The MIME media type for JPEG is image/jpeg (defined in RFC 1341), except in Internet Explorer, which provides a MIME type of image/pjpeg when uploading JPEG images.

It supports a maximum image size of 65535×65535.

The JPEG compression algorithm is at its best on photographs and paintings of realistic scenes with smooth variations of tone and color. For web usage, where the amount of data used for an image is important, JPEG is very popular. JPEG/Exif is also the most common format saved by digital cameras.

On the other hand, JPEG may not be as well suited for line drawings and other textual or iconic graphics, where the sharp contrasts between adjacent pixels can cause noticeable artifacts. Such images may be better saved in a lossless graphics format such as TIFF, GIF, PNG, or a raw image format. The JPEG standard actually includes a lossless coding mode, but that mode is not supported in most products.

As the typical use of JPEG is a lossy compression method, which somewhat reduces the image fidelity, it should not be used in scenarios where the exact reproduction of the data is required (such as some scientific and medical imaging applications and certain technical image processing work).

JPEG is also not well suited to files that will undergo multiple edits, as some image quality will usually be lost each time the image is decompressed and recompressed, particularly if the image is cropped or shifted, or if encoding parameters are changed – see digital generation loss for details. To avoid this, an image that is being modified or may be modified in the future can be saved in a lossless format, with a copy exported as JPEG for distribution.

The compression method is usually lossy, meaning that some original image information is lost and cannot be restored, possibly affecting image quality. There is an optional lossless mode defined in the JPEG standard; however, that mode is not widely supported in products.

There is also an interlaced "Progressive JPEG" format, in which data is compressed in multiple passes of progressively higher detail. This is ideal for large images that will be displayed while downloading over a slow connection, allowing a reasonable preview after receiving only a portion of the data. However, progressive JPEGs are not as widely supported, and even some software which does support them (such as some versions of Internet Explorer) only displays the image once it has been completely downloaded.

There are also many medical imaging and traffic systems that create and process 12-bit JPEG images, normally grayscale images. The 12-bit JPEG format has been part of the JPEG specification for some time, but again, this format is not as widely supported.

A number of alterations to a JPEG image can be performed losslessly (that is, without recompression and the associated quality loss) as long as the image size is a multiple of 1 MCU block (Minimum Coded Unit) (usually 16 pixels in both directions, for 4:2:0 chroma subsampling). Utilities that implement this include jpegtran, with user interface Jpegcrop, and the JPG_TRANSFORM plugin to IrfanView.

Blocks can be rotated in 90 degree increments, flipped in the horizontal, vertical and diagonal axes and moved about in the image. Not all blocks from the original image need to be used in the modified one.

The top and left edge of a JPEG image must lie on a block boundary, but the bottom and right edge need not do so. This limits the possible lossless crop operations, and also prevents flips and rotations of an image whose bottom or right edge does not lie on a block boundary for all channels (because the edge would end up on top or left, where - as aforementioned - a block boundary is obligatory).

When using lossless cropping, if the bottom or right side of the crop region is not on a block boundary then the rest of the data from the partially used blocks will still be present in the cropped file and can be recovered.

It is also possible to transform between baseline and progressive formats without any loss of quality, since the only difference is the order in which the coefficients are placed in the file.

No comments:

Post a Comment